S(3200)=16t^2

Simple and best practice solution for S(3200)=16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S(3200)=16t^2 equation:



(3200)=16S^2
We move all terms to the left:
(3200)-(16S^2)=0
a = -16; b = 0; c = +3200;
Δ = b2-4ac
Δ = 02-4·(-16)·3200
Δ = 204800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204800}=\sqrt{102400*2}=\sqrt{102400}*\sqrt{2}=320\sqrt{2}$
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-320\sqrt{2}}{2*-16}=\frac{0-320\sqrt{2}}{-32} =-\frac{320\sqrt{2}}{-32} =-\frac{10\sqrt{2}}{-1} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+320\sqrt{2}}{2*-16}=\frac{0+320\sqrt{2}}{-32} =\frac{320\sqrt{2}}{-32} =\frac{10\sqrt{2}}{-1} $

See similar equations:

| (5x-18)+(4x+7)=360 | | 9x-10=4x+4 | | 3/8m=-6 | | 3y+4(2y+3)=133 | | Z-11=3z+10 | | y-3/4=61/3 | | 2x=159 | | 3m+15/m^2-1/m=1 | | 2x+5=(3x^2)+2x-7 | | 3(x+4)^2+5=80 | | 45/x-1=8 | | x5=6x | | 4x+1+4x+5+x-6=180 | | 1.2w=102 | | -3×-3=x | | 3s+15=(s+5) | | 2x-2=5x-29 | | K/7×+3-2k=-3 | | 2y-14=2y-14 | | (2p)/3-12=-2 | | 6^x^2-33=36^4x | | A+4/2a+2=3/2 | | 20/x-3=4 | | 8v^2+80v+128=0 | | 6/x+2=1 | | 28/x-4=3 | | -24+n/4=10 | | 6m-9=15m-8 | | (-x^2)+99x-99=0 | | 2x+15x=2.1 | | 3x+14=9x−10 | | 63+68=-9x-5 |

Equations solver categories